

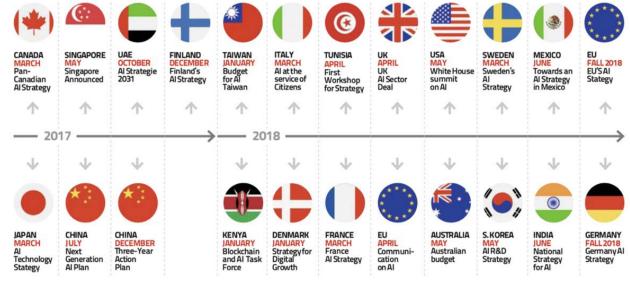
UKaid Skills for Employment Programme **Peer-to-Peer Learning Series: Market-Driven Skilling Initiatives for Employment and Linkage with National Vocational Qualification Framework**

Fusemachines AI Shikshya Skilling / Curriculum Approach

Date: Dec 10,2020

Rojesh M. Shikhrakar **Content & Curriculum Lead**

In Collaboration with

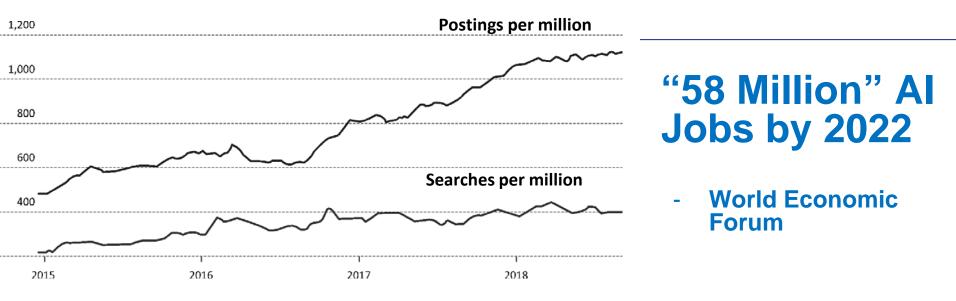

"Artificial intelligence (AI) is the new electricity" - Andrew Ng

270% Growth in Al adoption in last four years

Mckinsey Global Institute

Skills for Employment Programme सीप

ARTIFICIAL INTELLIGENCE STRATEGIES



Al job openings are rising faster than job seekers

MIT has just announced a \$1 billion plan to create a new college for AI

Landmark \$60M gift to establish major initiative in artificial intelligence at Indiana University

IU School of Informatics, Computing and Engineering to be named for alumnus and technology pioneer Fred Luddy

Stephen Schwarzman gives \$188 million to Oxford to research AI ethics

University of Toronto to build new AI innovation centre with \$100 million 'largest donation ever'

UK government backs Microsoft and University of Cambridge mission to build better AI

Skills for Employment Programme सीप

fuse|machines AI Shikshya for Nepal

Talent is everywhere, but opportunity is not.

"DEMOCRATIZE AI"

Al Fellowship 25 students in 2017 to 250+ 2019

Fuse.ai Scholarships (Online + OpenSession) 250 Scholarships in Jan 2019

Open

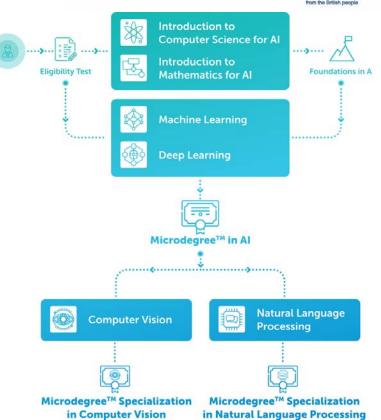
Fuse.ai MicroDegree[™] Program (Online + Onsite) Second Batch Starting in Jan

Binary tree

Fusemachines Launches 'AI Shikshya for Nepal' in Partnership With Colleges

Posted: Nov 27, 2019 6:46 PM

Program Design


Target Group (Eligibility):

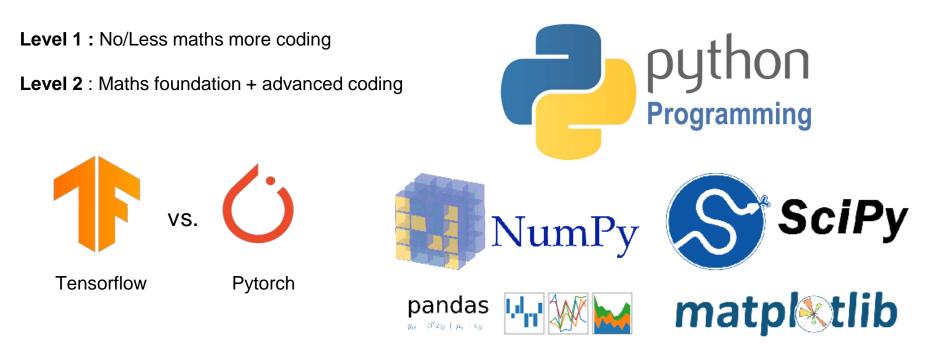
- Students in BSc and BIT level
- New course for entrepreneurs, business owners
- Course for professionals from different background

Common Objective of different programs:

- Gain both theoretical and hands-on knowledge on specific topics
- Prepare students for Job is AI Sector:
 - Data Analyst
 - ML Engineer, Data Engineer
 - Computer Vision Engineer ...

Tentative Timeline: 10-12 weeks course ~48-72 hrs

Courses Offered


Program	Courses	Levels	
Foundation for AI	CS for AI		
	Maths for Al		
Microdegree	Machine Learning	Level 1and 2	
	Deep Learning	Level 1 and 2	
Specialization	Computer Vision	Level 1and 2	
Specialization	Natural Language Processing	Level 1and 2	
	AI for Business		
Specialization	Al for Health Care		
Specialization	Data Engineering		

Market Driven Approach to Education

Course Design focused on common Skill required in IT jobs

Introduction to CS for AI

- 1. Introduction to the CS for AI
- 2. Basics of Computer Systems: Digital Logic, Computer Architecture, Linux OS, Computer Networks
- 3. Python Programming: Core and Frameworks
- 4. Data Structures and Algorithms
- 5. Database: SQL and NoSQL
- Application Development: Software development life cycle, web frameworks, deployment

IVIUCMG	HOME	BLOG CONT	ACT I	LINKEDIN	TWITTER	GITHUB
	a web dev	eloper by profession I enjoy creating the	and this is my little cor n, but also an avid pho ngs that focus on use	otographer, bo	ook reader	
C The Skills PHP Web Development 6 years, 9 projects		rdPress ears, 7 projects		ostgreSQL years, 4 projects		

Project: Designing Personal Portfolio website

Blended Learning Approach

Online

Web | Mobile | CodeHub

Self-paced learning

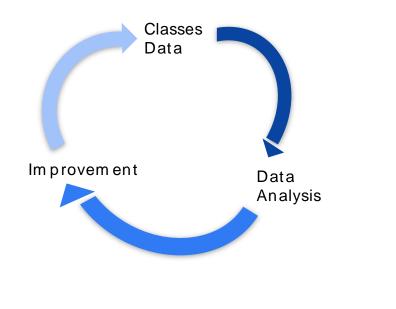
Forum for connectivism Videos + Subtitles Reading Materials Quizzes with Feedbacks External Reading Programming Assignment Forum Discussions

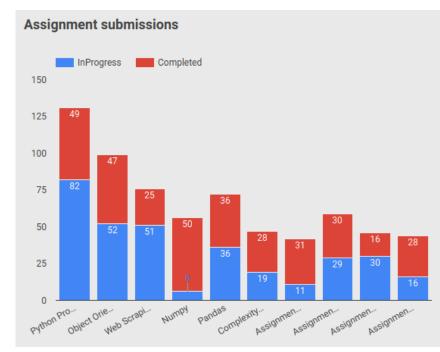
Seminars with famous AI Speakers Webinars by PhD Experts

Onsite

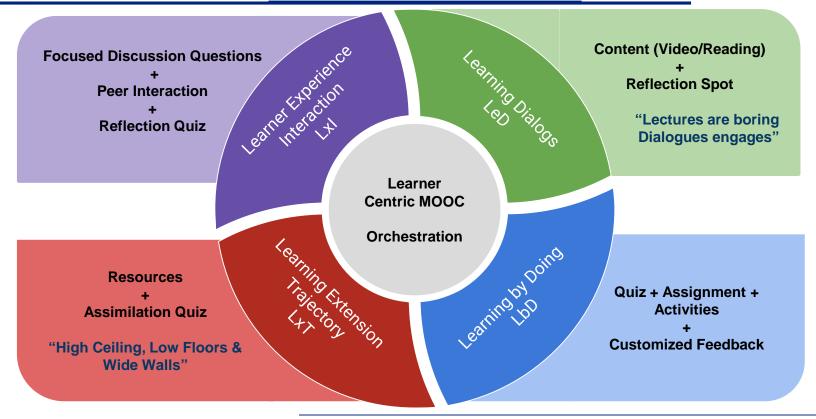
Classroom Discussions

Industry Experts Led Class


Hands-on approach


Lecture / Discussions Problem-based Learning (PBL) Individual Feedback Peer Programming Class Projects

Data-Driven Education Approach



Incorporating Education Researches

- Incorporating different Educational Research and Teaching Pedagogies
 - Flipped Classroom
 - Inquiry based Learning
 - Problem Based Learning (PBL)
 - Pedagogy and Andragogy
 - Learner Centric MOOC Structure and Learning Experience Design
- Training of Trainers (ToT) Sessions
 - Classroom Management
 - Lesson Planning
 - Micro-teaching Sessions

Curriculum Design

Lesson Plan for M7: Probabilistic Models
Learning Objectives: By the end of the lesson, all learners will be able to (minimum expected from everyone): 1. explain basics of probability distribution as applied to generative models 2. Implement a generative model for classification 3. Explain the parameter estimation using MLE and MAP 4. Explain how MLE is applied in case of linear and Logistic Regression By the end of the lesson, some students will be able to (those wishing to push themselves) 1.
Detail Outline: Unit 1. Introduction to Probabilistic Models Chapter 1.1. Generative Approach to Classification: 1.1.1. Discuss the difference between Discriminative vs Generative Approach (pros and cons) 1.1.2. Fit probability distribution to each class separately, for inference to predict the probability of belonging to a class. Chapter 1.2. Frequentist vs Bayesian Approach to Probabilistic Models 1.2.1. Compare and Contrast Frequentist vs Bayesian Approaches to probability and Statistics 1.2.2. Different estimation example in both views Unit 2. Probability Distributions
Assumed prior knowledge of Students: Students should complete ML L1 Course Linear Regression of L2 Basics of Probability: Joint/Conditional Probability, Random Variables, Expectation and Variance Multivariate Calculus: Perform partial Differentiation and Integration
Resources:

- [1411.5018] Frequentism and Bayesianism: A Python-driven Primer
- Frequentism and Bayesianism: A Practical Introduction
- CS109: Probability for Computer Scientists
- CS109 with videos
- PRML by Bishop

- For every Course
 - Modules
 - ➤ Units
 - Chapters
 - Video + Subtitles
 - Reading
 Materials
 - Quizzes
 - Programming Material
 - Assignments
 - > Projects

Examinations

Exploring Alignment with National & International System

Courses offered as Elective Subjects in University Affiliated Colleges

Fusemachines AI School

Kathmandu, Nepal

Santa Domingo, Dominican Republic Courses Integrated as credit courses

Summary

- 1. Market-Driven Approach : Focus on Work Skills than Academics
- 2. Blended Learning with Online and Onsite component with Industry exposure
- 3. Data-Driven Education Approach: Data Analysis to support students and improve course works
- Incorporation of Educational Research into Content and Curriculum Design:
 eg: Learner Centric MOOC
- Exploring Alignment with National and International Education Systems:
 Offering elective and for credit courses in different university affiliated colleges
 Thank you

:om

FOR ADDITIONAL INFORMATION

CONTACT

Name: Subash Manandhar Email: subash@fusemachines.com

Rojesh M. Shikhrakar rojesh@fusemachines.com